TURBULENT FLOW OF A POLYMER SOLUTION OVER
A FLAT PLATE

V. A. Gorodtsov UDC 532.517.4: 532.529.5

Logarithmic drag equations are derived by the Prandtl—Keirmén method. Error estimates for
certain simplifications are given, and errors occurring in the literature are eliminated. The
maximum drag-reduction regime is discussed.

The simplest method of analyzing a turbulent boundary layer on a plate in a viscous fluid is the Prandtl—
Karman method [1, 2], which is based on the notion of a local dependence of the average velocity on the dynamic
velocity ug(x) and boundary layer thickness 6(x) and the notion of coincidence of the velocity distributions near
a plate and near the walls of a pipe.

This method has been extended to the description of a boundary layer of polymer solutions [3-5]. How-
ever, White [3] commits a fundamental error, while the other two authors [4, 5] use formal expansions with-
out any error discussion. We now show that simple drag equations are obtained by virtue of the small param-
eters in the problem,

1. Prandtl—Karman Method for Polymer Solutions

In fully developed turbulent flow far from the surface of the plate large-scale inertial motions play a
dominant role without being directly affected by the polymer at the small concentrations in question. T The
average velocity distribution can be described by the usual "velocity defect law" [1]

Vi=Viu, = <ut> L[ (2d8), z>A,. (1.1)

Here only the position A, of the boundary of the wall buffer zone is affected by the presence of the poly-
mer,

If the layer thickness 4, is relatively small (A,/6 <« 0,1), we obtain from the equations of motion and.
incompressibility (density , = 1), neglecting} the contribution of the zone z < A, and normal stresses, the
KArmén integral relation
.
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the form of which is also independent of the type of fluid.

The universal function f;(7) can be approximated with acceptable accuracy by the expression (see Gorod-
tsov [6])

C1(1_n)2v 1>ﬂ>”ﬂp

fl(n):{_Allnn-i'Blv N> 1> A,/6,

(1.3)
TIt is assumed that the contribution of the forward part of the plate with undeveloped turbulence to the drag is
negligible (large plates and velocities).

1 The case in which &, ~ 0.156 and inwhich it is necessary to consider the zone z < A, will be discussed inSec, 5,
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where A = 2.44, C, = 9,6 [1, 2], and the conditions for smooth matching at the point 5 =n; are p; = 0,15 and
By = 2,3. In this approximation D; = 3.4 and D, = 22,

The magnitude of the velocity is sensitive to the presence of a dissolved polymer. According to studies
of flows of solutions in large pipes [7, 8], even though for z > A, the velocity is a logarithmic function of z
(as without the polymer), it increases by AB., Here AB depends on the characteristics of the solution, and
this dependence can be regarded with sufficient accuracy as involving two parameters (p and Ugey):

AB=BA In(V, VYAV o — V7). (1.4)

In the latter expression h is the unit Heaviside function, which has a nonzero value only for V' < Ver = V/
UYser:

According to the fundamental postulate of the Prandtl—~K4rmdn method Eq. (1.4) can also be used to
describe the flow of a solution over a plate.

The existence of a zone with a logarithmic velocity profile is known [1] to be attributable to overlapping
of the zones in which the outer and inner similarity laws hold, and

V®=AIné" +B,+ B, +-AB, 8" =u,d/v. _ (1.5)
In viscous fluids B, = 5.6, AB = 0, A'Z" ~ 30, and the condition for existence of a logarithmic zone 4, <

716 (noncontiguity of the wall and outer transition zones), or 6% > 200, reduces by virtue of (1.5) to the require-
ment

Vi>20. (1.6)
In polymer solutions A'z" increases, and condition (1.6) is all the more necessary.

Besides the large parameter V', it will be advantageous below to use the small parameter gV™):

o, _ V' . g, Dy _ LV
omv: 4, DV*—D,  e(VY) A

+PB+0.35 (1.7)

Here, according to (1.6), we have €1 > 8.7+ 8, and the approximate equality is satisfied with less than
two-percent error.

Consequently, for the two unknown functions U(x) and o(x) we have a complete system of equations (1.2),
(1.4), (1.5) containing small parameters. They are not exactly integrable, in general, except in the cases of
a viscous fluid (8 = 0) and integer values of 8. The opposite conclusion is drawn by White [3] due to a gross
error, Landweber and Poreh [9] use the integrability for integer-valued g in their calculations, In the general
situation, due to the small parameters, approximate integration is possible and has been carried out [4] by
means of formal expansions in reciprocal powers of V', The expansions, however, include terms with powers
of the parameter SA,/V™ [such terms arise, for example, in the series expansion of g(V") in reciprocal powers
of V*], which can be close to unity. Additional precision is therefore needed.

Integrating by parts,’ we obtain from (1.2) and (1.7)
x—xy=1I= j‘ V“"2d62 =(1—2%+ 2e2) V2 52 +1,

. (L.8)
Ilzj(1—28)83<8_1— de )V+2d62,

olnV*

where by inequality (1.6) we have the upper bound Iy < [(B8 + 1.2)/(B + 8.7)3]10. This bound permits us to re-
write (1.8) as follows with less than one-percent error:

x — X = V"%, exp (— 2e). (1.9)

Thus, the differential equation (1.2); is replaced with acceptable accuracy by the algebraic equation (1.9).
All that remains is to transform the system of algebraic equations (1.2);, (1.4), (1.5), (1.7), and (1.9) to a
useful form.

In the flow of a homogeneous polymer solution over a smooth plate the stress on the wall decreases as
the turbulent boundary layer develops [see (2.7)], and over the "length" of the plate (L > Lgy) it can fall below
the critical stress u} cr for influence of the polymer. Beginning with X = L s the polymer no longer affects
the turbulence,
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2. "Small" Plate (L < Lgr)

On a short plate the stress on the wall is above the critical level everywhere, and the system of equa-
tions (1.2),, (1.4), (1.5) (1.9) can be written in the form

Rez__ Vﬁz/v = ( D ) ( v )B exp [&MJ , (2.1)
VCI Al
Re, =Vx/v = on/v +V*2 Re, exp [— 2 (V*)]. (2.2)

Here X, is determined by the initial conditions for development of a turbulent boundary layer. Near the
point of its origin the wall stress is a maximum, and the polymer necessarily exerts maximum influence on
the nature of the transition from laminar to turbulent flow. To date, however, this problem has not been
studied experimentally for flow of a solution over a plate. T We assume hereinafter that Rey > Vx,/v and often
drop the term containing x,.

Eliminating Re, and introducing the local friction coefficient cg= 2/V+%, we rewrite (2.1) and (2.2) in the
conventional form

V%, = A, In(Re,c,/9) + BA, In(V_ V&2 + B, + By, (2.3)
B} = B,— A, In(D,— D, V &,/2) + 24,2 (V ¢,12). (2.4)

Within the one-percent error limits applicable in the derivation of Egs. (2.3) and (2.4) we can approxi-
mate B, by the expression —0.7 + 20Vcy and deduce the drag equationi (@ = 5.6p)

Ve, = 41g(Reycy) + —— V gV, Viei2) + 23 + 14y7¢,. (2.5)
If we allow a maximum three-percent error, we can put B1 ~ 1/3:
1V ¢, = 41g (Re, ¢;) -+ % lg(V,, V¢,/2) +3. (2.6)

The implicit nature of the dependence of cf on Rey is a drawback of these equations. However, owing
to the smallness of the parameter ve 72 = 1/V* they can be approximately expanded in V¥, Thus, in the
interval of practical interest 20 < V+ < 120, replacing logV*t by 1.2 + 0.08 VY, we can transform the equation
as follows within an error of a few percent:

(1 + 0.04p)

l_A = 3.61gRe, (V. /16)f ] —5. 2.7
Ve, |
It is clear from this result that the stress on the wall diminishes monotonically along the plate.

3. "Large" Plate (L >Lg¢r)

Up to the point x = Ly the stress on the wall exceeds the critical value, and the development of the
boundary layer is the same as for a "small" plate. After this point the boundary layer develops as in the
case of a viscous fluid,

Taking x = Loy, V' = Vop as the starting point for the integration of Eq. (1.2),, we obtain equations of
the type (2.1) and (2.2) with § and x; replaced by, respectively, ¢ and xqy:

(DY . —Dy exp[ Va—B—B, _ 24, ] (3.1)
A, Ver

* cr = L‘CI

Ugcr
Inasmuch as Eqs, (2.1) and (2.2) hold for x = Lg;, they can be used to express Lgy in terms of Ver and §:
—B,— B, '

1

vV
La=rot— OVa—D)exp [ X —2ea) | (3.2)

Uy or
Hence we infer that
T In "small" pipes the so-called "early turbulence" effect is observed in the transition region.

1 Other numerical values of the coefficients A, and B; are frequently chosen in the drag equations to provide
a better fit with the experimental data [2].
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X R Xy+

v o 2pAs —B,—B, 24, ]

TV
v Vcr+§A (D — z)EXp[ cr i — 7 (3.3)

where the second term is less than 0.1 Lcr For x> Loy, therefore, the quantity xcr, like x, previously, can
be dropped.

Consequently, for Rey < ‘VLcr/V the equation for the local friction coefficient of a long plate in a poly-
mer solution has the form (2.5), and for Rex > VLgp/V it is the same as for a viscous fluid (i. e., for 8 = 0):

1/V¢; = 41g(Reyc)) + 2.3+ 14V¢y (3.4)
Within one-percent error limits this relation can be rewritten in the form [see (2.7)]

1/V¢; = 3.351g Re, — 3. (3.5)

4, Total Friction Coefficient

From Eq. (1.2); we obtain, assuming that 6,(0) < 0,(L),

L
C,E—}ll- Xc,(x)dx: 26iL)= R2e Vﬁs(l‘) , (4.1)

and now from Eqs. (2.1) and (2.2) we can deduce parametric equations relating the total friction coefficient Ct
and Reynolds number Re = VL/v:

Cf=§exp[2e(a)1, £ = Vi, (L), (4.2)

Viu
Resg(Dlg—Dg)( Vg )Bexpl §— i — 2 (g)] . (4.3)

Cr

Within one-percent error limits relation (4.2) is readily expanded in the parameter ¢:

VT BNV E )

and the substitution of (4.4) into (4.3) yields an expression for Re in terms of C;. On the other hand, Eq.
(4.4) enables us to détermine the total friction coefficient Cf from the known local friction coefficient cgp, =
cf(L):

c =CfL<l—L ——————3’51’/@7_) . (#-3)
! L1+ LBV !

Eliminating the parameter ¢ from (4.2) and (4.3) with one-percent error, we obtain the drag equation
in its traditional form:

1/V/C, = /Q In(ReC,)+ B I, VCi2) + 0.7+ 851C,. (4.6)

V

An expression of this type has been obtained earlier [4] for polymer solutions and, as already noted by
Landweber and Poreh [9], is satisfactory, despite the inadequacy of the intermediate calculations in the former
paper,

The inadequacy of Granville's calculations [4], as mentioned, lies in the fact that the expansions include

terms containing the parameter._BAp/ C¢/2, which cannot be small. Such terms, however, cancel one another in
the final stage of the transition to (4.6).

If, rather than the freestream velocity V, the plate length L, is taken as the fixed parameter, it is neces-
sary in the drag equation to make the substltutlon V = Rev/L, or Vgr = Rev/(Luxgy); see Gorodtsov [10] for
details.

In a viscous fluid the quantity l/v'C‘f— essentially varies from 14 to ~ 30, and (4.6) can be simplified, re-
placing

myC,+5¥C, by —34—011YCs
/Y C,; = 3.31gRe — 4,5. 4.7
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5. Maximum Drag Reduction

We have assumed up to now that the thicknesses of the viscous sublayer and wall buffer zone are negli-
gible in comparison with the thickness of the boundary layer. We now examine the case in which the buffer
zone is contiguous with the outer mixing zone of the flow, i. e., A, ~ 0,156, We assume that this flow regime,
for which the large-scale structure of the outer flow zone is the only factor left unaltered by addition of the
polymer, is the maximum drag-reduction regime. t

It is well known [8] that with a large drag reduction the velocity profile in the buffer layer A, <z < A,
is close to logarithmic, so that it is once again permissible to use an approximation of the form (1.3) with
A;/6 taken as the lower bound. However, if C; = 9.6 and 5, ~ 0.15 remain unchanged due to the presumed in-
variance of the outer transition zene, the remaining coefficientsi now have different numerical values:

A, —11.6; B,= 168, B, =—151; D, =47, D,=80. (5.1)

In the given special case, as for a viscous fluid, the integral I in (1.8) can be computed exactly (these
two cases differ only in the numerical coefficients):

24,  2DA7 I ,
! :(I“V—:“Jrnlv’f D, V* )V% ' &2

and the equations are reduced to algebraic expressions [cf, (2.1) and (2.2)]:

D V+—B,—B
Re, = (Dlm7f~> exp[—ﬁ*—l] , (5.3)
2Al 2D A2 } +9 5 4
Rex: [l—- V+ + V+(D V+ 2) 1% Rez- ( N )

These relations, in turn, can within one-percent error limits be rewritten in the traditional form for
the drag equation:

11V ¢;=8.2In(Re, c;) — 41 —8.21n (1 — 29V¢; + 300c;). (5.9)

For the total friction coefficient Cg, using (4.1), (5.3), and (5.4), we write

C. = I (% __ . (5.6)
T 1164V ¢l — 8,2/ ¢ — 12)]

Finally, from (4.1), (5.3), and (5.4) we obtain in approximate fashion the drag equation (c¢f. Granville

12y
1/VC,=8.2In(ReC)) —49 + 140, C,. (5.7

Note that for Re > 10° the error incurred in the transition from (5.3)-(5.4) to (5.7) is a few percent, while
for smaller Reynolds numbers the error increases to ten percent.

NOTATION

4, boundary layer thickness; 6,, momentum-loss distance; A,, thickness of wall buffer zone; V, free-
stream velocity; Uy, dynamic velocity; ucy, critical dynamic velocity at which influence of the polymer begins;
B, dimensionless characteristic of the intensity of influence of the polymer; Re, Reynolds number; cf, Cf,
friction coefficients; Ay, By, By, Cy, Dy, D,, numerical coefficients,
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FLUID FRICTION OF A POLYMER SOLUTION FLOWING
IN A LARGE-DIAMETER PIPE

Yu. F. Ivanyuta and L, A, Chekalova UDC 532.135

Experimental data are given from comparative tests to determine the fluid friction in flows of a
Polyox solution with a concentration ¢ = 7* 1078 g/cm3 in pipes bhaving diameters d = 35.5 mm and
d= 514 mm,

§1, The discovery of drag reduction effected in turbulent flows of water near a rigid wall by the addi-
tion of small quantities of high-molecular-weight compounds (polymers) to the flow has in the last few years
motivated extensive research aimed at explaining this phenomenon and devising practical methods for predict-
ing the attainable net effect. One of the possible techniques for calculating the net effect of drag reduction in
pipe flows of polymer solutions has been proposed by the authors [1]. The method is based on universal
graphs of the investigated influence of polymer additives as a function of the type of polymer, flow velocity
in the pipe, and concentration of the solution [1, 2], However, all the experimental material used for analysis
and plotted in the form of universal graphs refers to flows in pipes whose diameters do not exceed 35 mm and
the flow velocity is such that the range of Reynolds numbers is 7- 10° to 3-10°, The published data on the
influence of polymer additives in a flow on the friction in pipes have also been obtained in the same range of
pipe diameters (d < 50 mm) and Reynolds numbers (Re < 5 105) and correspond qualitatively to the results of
our earlier generalization [1, 2].

Thus, all the cited experiments have been conducted under conditions of a limited range of Reynolds
numbers in comparatively small-diameter pipes, The difficulties inherent in the experimental investigation of
the characteristics of turbulent flow of polymer solutions in pipes of large diameter stem primarily from the

4020 L i
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Fig. 1. Coefficient of fluid friction versus Reynolds number Re
for flow of water and a Polyox solution with concentration ¢ =
7.107¢ g/em® in pipes with diameters d = 35.5 mm (a) and d =
514 mm (b). 1) Water; 2) Polyox solution; 3) Galavics' tests
with water [4]: I) 1/VA = 2log RevA—0.8.
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